Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Sci Sports Exerc ; 55(11): 2035-2044, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37418239

RESUMEN

PURPOSE: The amount of muscle belly elongation induced by passive lengthening is often assumed to be equal to that of fascicles. But these are different if fascicles shorter than the muscle belly rotate around their attachment sites. Such discrepancy between fascicles and muscle belly length changes can be considered as gearing. As the muscle fascicle arrangement is 3D, the fascicle rotation by passive lengthening may occur in the coronal as well as the sagittal planes. Here we examined the fascicle 3D dynamics and resultant gearing during passive elongation of human medial gastrocnemius in vivo . METHODS: For 16 healthy adults, we reconstructed fascicles three-dimensionally using diffusion tensor imaging and evaluated the change in fascicle length and angles in the sagittal and coronal planes during passive ankle dorsiflexion (from 20° plantar flexion to 20° dorsiflexion). RESULTS: Whole muscle belly elongation during passive ankle dorsiflexion was 38% greater than the fascicle elongation. Upon passive lengthening, the fascicle angle in the sagittal plane in all regions (-5.9°) and that in the coronal plane in the middle-medial (-2.7°) and distal-medial (-4.3°) regions decreased significantly. Combining the fascicle coronal and sagittal rotation significantly increased the gearing effects in the middle-medial (+10%) and distal-medial (+23%) regions. The gearing effect by fascicle sagittal and coronal rotations corresponded to 26% of fascicle elongation, accounting for 19% of whole muscle belly elongation. CONCLUSIONS: Fascicle rotation in the coronal and sagittal planes is responsible for passive gearing, contributing to the whole muscle belly elongation. Passive gearing can be favorable for reducing fascicle elongation for a given muscle belly elongation.


Asunto(s)
Imagen de Difusión Tensora , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Rango del Movimiento Articular/fisiología , Ultrasonografía , Articulación del Tobillo/diagnóstico por imagen , Articulación del Tobillo/fisiología
2.
J Strength Cond Res ; 37(11): e588-e592, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37099441

RESUMEN

ABSTRACT: Shiotani, H, Mizokuchi, T, Yamashita, R, Naito, M, and Kawakami, Y. Influence of body mass on running-induced changes in mechanical properties of plantar fascia. J Strength Cond Res 37(11): e588-e592, 2023-Body mass is a major risk factor for plantar fasciopathy; however, evidence explaining the process between risk factors and injury development is limited. Long-distance running induces transient and site-specific reduction in plantar fascia (PF) stiffness, reflecting mechanical fatigue and microscopic damage within the tissue. As greater mechanical loads can induce greater reduction in tissue stiffness, we hypothesized that the degree of running-induced change in PF stiffness is associated with body mass. Ten long-distance male runners (age: 21 - 23 years, body mass: 55.5 ± 4.2 kg; mean ± SD ) and 10 untrained men (age: 20 - 24 years, body mass: 58.4 ± 5.6 kg) ran for 10 km. Before and immediately after running, the shear wave velocity (SWV) of PF at the proximal site, which is an index of tissue stiffness, was measured using ultrasound shear wave elastography. Although the PF SWV significantly decreased after running in runners (-4.0%, p = 0.010) and untrained men (-21.9%, p < 0.001), runners exhibited smaller changes ( p < 0.001). The relative changes in SWV significantly correlated with body mass in both runners ( r = -0.691, p = 0.027) and untrained individuals ( r = -0.723, p = 0.018). These results indicate that a larger body mass is associated with a greater reduction in PF stiffness. Our findings provide in vivo evidence of the biomechanical basis for body mass as a risk factor for plantar fasciopathy. Furthermore, group differences suggest possible factors that reduce the fatigue responses, such as adaptation enhancing the resilience of PF and running mechanics.


Asunto(s)
Fascitis Plantar , Carrera , Humanos , Masculino , Adulto Joven , Adulto , Fenómenos Biomecánicos , Músculo Esquelético/fisiología , Carrera/fisiología , Fascia/diagnóstico por imagen
3.
Med Sci Sports Exerc ; 55(1): 66-73, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35977106

RESUMEN

PURPOSE: The human ankle-foot complex possesses a passive range of motion (ROM) through changes in tibiocalcaneal ( θcal ) and foot arch ( θarch ) angles. Based on the anatomical linkage between the Achilles tendon (AT) and plantar fascia (PF), we hypothesized that AT and PF with different mechanical properties conjointly modulate the passive ROM of the human ankle-foot complex. We examined the association of AT and PF stiffness with passive ankle-foot ROM and further addressed differences between sexes. METHODS: A series of sagittal magnetic resonance images of the foot and passive ankle plantar flexion torque were obtained for 20 men and 20 women with their ankle-foot passively rotated from 30° of plantar flexion to 20° of dorsiflexion. Based on the measured changes in AT and PF lengths, θcal , θarch , and passive torque, AT and PF stiffness were determined. RESULTS: Upon passive ankle dorsiflexion, AT and PF were lengthened; their length changes were inversely correlated. Men showed a stiffer AT, more compliant PF, less calcaneal rotation, and greater foot arch deformation compared with women. Furthermore, we found inverse correlations between AT stiffness and ROM of θcal , and between PF stiffness and ROM of θarch in men and women. CONCLUSIONS: Passive AT and PF extensibility counter each other. AT and PF stiffness and passive ROM of ankle-foot components were countered between sexes; however, associations between stiffness and passive ROM of the ankle-foot complex were consistent between sexes. Our findings support the notion that the balanced mechanical interaction between the AT and PF can account for the passive ROM of the human ankle-foot complex in vivo , and the differences between sexes.


Asunto(s)
Tendón Calcáneo , Tobillo , Masculino , Humanos , Femenino , Tendón Calcáneo/diagnóstico por imagen , Articulación del Tobillo , Rango del Movimiento Articular , Músculo Esquelético , Fascia
4.
J Anat ; 241(6): 1324-1335, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36004517

RESUMEN

Fascicle architecture (length and pennation angle) can vary regionally within a muscle. The architectural variability in human muscles has been evaluated in vivo, but the interindividual variation and its determinants remain unclear. Considering that within-muscle non-uniform changes in pennation angle are associated with change in muscle size by chronic mechanical loading, we hypothesized that the regional variation in fascicle architecture is dependent on interindividual variation in muscle size. To test this hypothesis, we reconstructed fascicles three-dimensionally along and across the whole medial gastrocnemius in the right lower leg of 15 healthy adults (10 males and 5 females, 23.7 ± 3.3 years, 165.8 ± 8.3 cm, 61.9 ± 11.4 kg, mean ± standard deviation) in neutral ankle joint position with the knee fully extended, using magnetic resonance diffusion tensor imaging and tractography. The 3D-reconstructed fascicles arose from the deep aponeurosis with variable lengths and angles both in sagittal and coronal planes. The fascicle length was significantly longer in the middle (middle-medial: 52.4 ± 6.1 mm, middle-lateral: 52.0 ± 5.1 mm) compared to distal regions (distal-medial: 41.0 ± 5.0 mm, distal-lateral: 38.9 ± 3.6 mm, p < 0.001). The 2D pennation angle (angle relative to muscle surface) was significantly greater in distal than middle regions, and medial than lateral regions (middle-medial: 26.6 ± 3.1°, middle-lateral: 24.1 ± 2.3°, distal-medial: 31.2 ± 3.6°, distal-lateral: 29.2 ± 3.0°, p ≤ 0.017), while only a proximo-distal difference was significant (p < 0.001) for 3D pennation angle (angle relative to line of action of muscle). These results clearly indicate fascicle's architectural variation in 3D. The magnitude of regional variation evaluated as standard deviation across regions differed considerably among individuals (4.0-10.7 mm for fascicle length, 0.9-5.0° for 2D pennation angle, and 3.0-8.8° for 3D pennation angle), which was positively correlated with the muscle volume normalized to body mass (r = 0.659-0.828, p ≤ 0.008). These findings indicate muscle-size dependence of the variability of fascicle architecture.


Asunto(s)
Imagen de Difusión Tensora , Músculo Esquelético , Adulto , Masculino , Femenino , Humanos , Ultrasonografía/métodos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Articulación del Tobillo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
5.
J Sports Med Phys Fitness ; 62(7): 883-889, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34609097

RESUMEN

BACKGROUND: Barefoot runners have a higher probability of lower leg and foot disorders compared to runners wearing traditional running shoes. However, the site of muscle stress due to barefoot running has not been reported. This study aimed to investigate the effects of shod and barefoot running on muscle mechanical properties. METHODS: A total of 18 healthy male subjects were included in this study and were assigned to either the shod running group or the barefoot running group. While the shod group ran on the treadmill at a speed of 75% heart rate reserve for 45 min with shoes, the barefoot group ran without shoes after warm-up session. As an index of muscle stiffness, the shear wave velocity (SWV) of the eleven lower extremity muscles were measured at rest before and after exercise using shear wave elastography. RESULTS: The tibialis posterior SWV was increased after running in the shod (3.67±0.41 m/s to 3.90±0.45 m/s) and barefoot (3.70±0.36 m/s to 4.02±0.54 m/s) groups. In contrast, the vastus lateralis SWV was increased only in the shod group (2.62±0.32 m/s to 2.80±0.34 m/s), while the peroneus muscle SWV increased only in the barefoot group (3.24±0.48 m/s to 3.50±0.55 m/s and 2.92±0.5 m/s to 3.11±0.49 m/s for the superficial and deep layers, respectively). CONCLUSIONS: The shod condition selectively influences changes in the stiffness of the vastus lateralis and peroneus muscles during running but has no effect on the tibialis posterior.


Asunto(s)
Carrera , Zapatos , Fenómenos Biomecánicos , Pie/fisiología , Marcha/fisiología , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Carrera/fisiología
6.
BMC Pediatr ; 21(1): 552, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872516

RESUMEN

BACKGROUND: Early childhood is a transferring stage between the two accelerated growth periods (infant and adolescent). Body dimensions are related to physical growth and development. The purpose of this study was to investigate physical growth in terms of anthropometry, muscle growth of the lower extremity, and functional development over early childhood. METHODS: A cross-sectional study was carried out on 29 preschool children (PS: 3-5 years), 21 school children (SC: 6-8 years), and 22 adults (AD: 20-35 years). Lower extremity characteristics (segmental dimensions, muscle and adipose tissue thicknesses of the thigh and lower leg), and voluntary joint torque (knee and ankle) were measured. Correlations between parameters and group comparisons were performed. RESULTS: All the parameters except for body mass index (BMI) and subcutaneous adipose tissue thickness were correlated with age for PS and SC combined (r = 0.479-0.920, p < 0.01). Relative thigh and shank lengths to body height were greatest in AD and smallest in PS (p < 0.05) but the relative foot dimensions were significantly larger in PS and SC than in AD (p < 0.05). Relative subcutaneous adipose tissue thickness was largest in PS and lowest in AD. Muscle thickness and the muscle volume measure (estimated from muscle thickness and limb length) were significantly larger in older age groups (p < 0.05). All groups showed comparable muscle thickness when normalized to limb length. Joint torque normalized to estimated muscle volume was greatest for AD, followed by SC and PS (p < 0.05). CONCLUSIONS: Relative lower extremity lengths increase with age, except for the foot dimensions. Muscle size increases with age in proportion to the limb length, while relative adiposity decreases. Torque-producing capacity is highly variable in children and rapidly develops toward adulthood. This cross-sectional study suggests that children are not a small scale version of adults, neither morphologically nor functionally.


Asunto(s)
Extremidad Inferior , Muslo , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios Transversales , Crecimiento y Desarrollo , Humanos , Músculo Esquelético , Torque
7.
Sci Rep ; 11(1): 9260, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927340

RESUMEN

Human steady-state locomotion modes are symmetrical, leading to symmetric mechanical function of human feet in general; however, track distance running in a counterclockwise direction exposes the runner's feet to asymmetrical stress. This may induce asymmetrical adaptation in the runners' foot arch functions, but this has not been experimentally tested. Here, we show that the plantar fascia (PF), a primary structure of the foot arch elasticity, is stiffer for the left than the right foot as a characteristic of runners, via a cross-sectional study on 10 track distance runners and 10 untrained individuals. Shear wave velocity (index of tissue stiffness: SWV) and thickness of PF and foot dimensions were compared between sides and groups. Runners showed higher PF SWV in their left (9.4 ± 1.0 m/s) than right (8.9 ± 0.9 m/s) feet, whereas untrained individuals showed no bilateral differences (8.5 ± 1.5 m/s and 8.6 ± 1.7 m/s, respectively). Additionally, runners showed higher left to right (L/R) ratio of PF SWV than untrained men (105.1% and 97.7%, respectively). PF thickness and foot dimensions were not significantly different between sides or groups. These results demonstrate stiffer PF in the left feet of runners, which may reflect adaptation to their running-specific training that involves asymmetrical mechanical loading.


Asunto(s)
Fascitis Plantar/fisiopatología , Carrera/fisiología , Adulto , Atletas , Fenómenos Biomecánicos , Estudios Transversales , Humanos , Masculino , Músculo Esquelético/fisiología , Adulto Joven
8.
J Appl Physiol (1985) ; 130(2): 390-399, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242300

RESUMEN

The plantar fascia (PF), a primary contributor of the foot arch elasticity, may experience slack, taut, and stretched states depending on the ankle and metatarsophalangeal (MTP) joint positions. Since PF has proximodistal site difference in its dimensions and stiffness, the response to applied tension can also be site specific. Furthermore, PF can contribute to supporting the foot arch while being stretched beyond the slack length, but it has never been quantitatively evaluated in vivo. This study investigated the effects of the ankle and MTP joint positions on PF length and localized thickness and shear wave velocity (SWV) at three different sites from its proximal to distal end using magnetic resonance and supersonic shear imaging techniques. During passive ankle dorsiflexion, rise of SWV, an indication of slack length, was observed at the proximal site when the ankle was positioned by 10°-0° ankle plantar flexion with up to 3 mm (+1.5%) increase in PF length. On the other hand, SWV increased at the distal site when MTP joint dorsiflexed 40° with the ankle 30°-20° plantar flexion, and in this position, PF was lengthened up to 4 mm (+2.3%). Beyond the slack length, SWV curvilinearly increased at all measurement sites toward the maximal dorsiflexion angle whereas PF lengthened up to 9 mm (+7.6%) without measurable changes in its thickness. This study provides evidence that the dimensions and SWV of PF change in a site-specific manner depending on the ankle and MTP joint positions, which can diversify foot arch elasticity during human locomotion.NEW & NOTEWORTHY Joint angle dependence and site specificity of the plantar fascial dimensions and SWV were examined by combining sagittal magnetic resonance and supersonic shear imaging techniques. We revealed that the site-specific changes in PF SWV were related to joint angle positions, i.e., PF slackness and elasticity changed in varying combinations of ankle and MTP angle. Our findings suggest that PF can elastically support the foot arch throughout the stance phase of human bipedal locomotion.


Asunto(s)
Tobillo , Articulación Metatarsofalángica , Articulación del Tobillo , Fascia , Pie , Humanos , Músculo Esquelético
9.
Gait Posture ; 83: 223-229, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176233

RESUMEN

BACKGROUNDS: Joint kinetic calculations are sensitive to joint centre locations. Although geometric hip and knee joint centre/axis are generally developed, the ankle joint centre (AJC) is conventionally defined as the midpoint between the malleolus lateralis and medialis (AJCMID) in most gait analyses. RESEARCH QUESTION: We examined the positional difference of the AJCMID from the geometric centre of rotation (AJCFUN) and its effect on the ankle joint kinetics in representative human gaits. METHODS: In the first experiment, we calculated the AJCFUN and indicated its location on the ankle MRI in 14 (seven male and seven female) participants. In the second experiment, we compared ankle kinematics/kinetics based on AJCFUN and AJCMID during walking and hopping at 2.6 Hz in 17 (nine male and eight female) participants. RESULTS: In both experiments, AJCFUN was located at positions significantly medial (-9.2 ± 5.4 mm and -10.1 ± 4.4 mm) and anterior (17.0 ± 7.4 mm and 15.3 ± 5.2 mm) from the AJCMID. Furthermore, the AJCMID underestimated peak dorsiflexion (AJCMID/AJCFUN: 52.6 ± 17.1%) and inversion (AJCMID/AJCFUN: 62.2 ± 11.5%) torques and their durations in walking. Additionally, AJCMID overestimated the plantar flexion torque in both gait modes [AJCMID/AJCFUN: 111.3 ± 4.8% (walking) and 112.7 ± 6.3% (hopping)]. SIGNIFICANCE: We therefore concluded that the positional difference between the geometric and landmark-based AJC definitions significantly affected ankle kinetics, thereby indicating that the functional method should be used for defining AJC for gait analysis.


Asunto(s)
Articulación del Tobillo/fisiopatología , Fenómenos Biomecánicos/fisiología , Imagenología Tridimensional/métodos , Adulto , Femenino , Humanos , Masculino , Rotación
10.
Scand J Med Sci Sports ; 30(8): 1360-1368, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32306478

RESUMEN

Long-distance running (LDR) can induce transient lowering of the foot arch, which may be associated with mechanical fatigue of the plantar fascia (PF). However, this has not been experimentally tested in vivo. The purpose of this study was to test our hypothesis that LDR induces transient and site-specific changes in PF stiffness and morphology and that those changes are related to the lowering of the foot arch. Ten male recreational long-distance runners and 10 untrained men were requested to run overground for 10 km. Before and after running, shear wave velocity (SWV: an index of soft tissue stiffness) and thickness of PF at three different sites from its proximal to distal end were measured using supersonic shear imaging and B-mode ultrasonography. Foot dimensions including the navicular height were measured using a three-dimensional foot scanner. SWV at the proximal site of PF and navicular height was significantly decreased in both groups after running, with a higher degree in untrained men (-21.9% and -14.1%, respectively) than in runners (-4.0% and -6.3%, respectively). The relative change (%Δ) in SWV was positively correlated with %Δnavicular height in both groups (r = .69 and r = .65, respectively). Multiple regression analysis revealed that %ΔSWV at the proximal site solely explained 72.7% of the total variance in %Δnavicular height. It is concluded that LDR induces transient and site-specific decreases in PF stiffness. These results suggest that the majority of running-induced lowering of the foot arch is attributable to the reduction of PF stiffness at the proximal site.


Asunto(s)
Fascia/fisiología , Pie/fisiología , Carrera/fisiología , Fenómenos Biomecánicos , Humanos , Masculino , Adulto Joven
11.
J Biomech ; 85: 198-203, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30665708

RESUMEN

The purpose of this study was to investigate the site- and sex-differences in the morphological and mechanical properties of the plantar fascia (PF) in humans. The thickness and shear wave velocity (SWV) of PF at five different sites between the medial calcaneal tubercle and the second toe were measured for 40 healthy young participants (20 males and 20 females) using supersonic shear imaging (SSI). The thickness and SWV measurements were highly repeatable (ICC ≥ 0.93). The proximal sites of PF around the calcaneal attachment were significantly thicker and stiffer (higher SWV values) than the middle and distal sites (p < 0.05). In addition, females had significantly thinner PF in proximal and middle sites than males, while being significantly stiffer in regardless of the sites, compared with males (p < 0.05). The results of the present study partly support previous findings on the site- and sex-differences in PF morphology, and further reveal inhomogeneity and sex-specificity of PF stiffness. The present study widely opens the possibility of evaluating PF functions in vivo.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fascia , Pie , Adulto , Fenómenos Biomecánicos , Calcáneo/diagnóstico por imagen , Fascia/anatomía & histología , Fascia/diagnóstico por imagen , Femenino , Pie/anatomía & histología , Pie/diagnóstico por imagen , Voluntarios Sanos , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Factores Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...